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Abstract

A numerical analysis is carried out for the development of damage by fibre–matrix debonding in aluminium rein-

forced by aligned, short SiC fibres. A unit cell-model that has earlier been applied to study materials with arrays of

transversely staggered fibres is here extended to contain a number of differently shaped fibres or particulates in each unit

cell, thus representing debonding of a relatively long discontinuous fibre among particulates that do not debond. In-

terfacial failure is modelled in terms of a cohesive zone model that accounts for decohesion by normal separation as well

as by tangential separation. It is found that the evolution of failure can depend rather strongly on the distribution of

particulates around a fibre subject to debonding.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Metals reinforced by short brittle fibres have increased stiffness and tensile strength, but the reinforce-

ment also leads to poor ductility and low fracture toughness (Divecha et al., 1981; McDanels, 1985; Zok

et al., 1988). Debonding of the matrix–fibre interface or fibre breakage can result in early void formation,

and also ductile matrix failure can be promoted by the stress and strain concentrations occurring around

sharp fibre edges (Needleman et al., 1993). To improve the overall material behaviour, a parametric
understanding of the effect of different material parameters is important, as can be obtained by numerical

cell-model analyses. Such analyses are an important tool, as they allow for an accurate representation of the

fibre shape, the volume fraction, the strength of the interface and the fibres, and the matrix yield stress and

strain hardening, thus leading to realistic stress and strain fields around the fibres. The different failure

mechanisms have been studied in a number of cell-model analyses (Nutt and Needleman, 1987; Tvergaard,

1993, 1998; Finot et al., 1994). Studies of fracture in metals reinforced by long fibres, follow somewhat

different procedures, as e.g. discussed by Dvorak et al. (1992).
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The present investigation is focussed on failure by matrix–fibre debonding, using a cohesive zone model

that describes decohesion by any mixture of normal separation and tangential separation (Tvergaard,

1990b, 1991). Effects of fibre clustering are important, but still most cell-model analyses have considered a

characteristic material volume containing only a single fibre, which does not allow for clustering. In a plane
strain model of a discontinuously reinforced metal it is rather easy to include many fibres with different

shapes and spacings in a unit cell, thus representing some degree of clustering, but the plane strain models

have the disadvantage that fibre geometries are not realistically represented (e.g. see Needleman et al.,

1993). On the other hand, axisymmetric cell-models allow for rather realistic fibre geometries, without

enforcing the complications of a full three dimensional numerical analysis. Therefore, an axisymmetric cell-

model will be used here, which includes other short fibres than those undergoing debonding along the

matrix–fibre interface. By also using a special cell-model that represents transversely staggered arrays of

fibres (Tvergaard, 1990a), it is possible here to study the effect of fibres that fail by debonding while sur-
rounded by fibres that do not fail. The results will be compared with predictions for simple periodic arrays

of fibres, as in Tvergaard (1990b), where all fibres fail simultaneously.
2. Problem formulation

The axisymmetric unit cell-model to be used here is that also used by Tvergaard (1990b) for the study of

debonding in a periodic array of aligned fibres that can be represented by taking only one fibre inside each

unit cell (see Fig. 1). For this case a cross-section perpendicular to the fibres (Fig. 1(b)) shows a square array

of fibres with spacing 2ac, and the initial radius rc ¼ ð2=
ffiffiffi
p

p
Þac of the axisymmetric model problem is chosen

such that the fibre volume fraction of the cell is equal to that of the material illustrated in Fig. 1. With the

initial cell length ‘c, and the fibre geometry specified by the initial half length ‘f and radius rf , the fibre
volume fraction f in the case of one fibre is f ¼ ðr2f ‘fÞ=ðr2c‘cÞ. Then the initial aspect ratios of the fibre and

cell, respectively, are specified by af ¼ ‘f=rf , ac ¼ ‘c=rc. The periodic fibre array shown in Fig. 1 corresponds

to one of the materials to be analysed here (i.e. material A in Fig. 3).

The boundary conditions applied for this cell-model with transversely staggered fibres are specified by

the following considerations. On the curved side of the circular cylindrical cell, equilibrium and compat-

ibility with the neighbouring cells has to be represented in an approximate manner. A neighbouring cell is

identical to that analysed, but is rotated 180� so that it points in the opposite direction (see Fig. 1(a)).
Fig. 1. Transversely staggered periodic array of aligned fibres, in a case where the unit cell contains only one fibre (as in material A,

Fig. 3), (a) cross-section along fibres and (b) cross-section normal to fibres.
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Compatibility and equilibrium in the axial direction are directly specified in terms of the axial edge dis-

placements and nominal tractions. In the radial direction compatibility is represented by the requirement

that the total cross-sectional area (consisting of an equal number of cross-sections of the two types of

neighbouring cells considered) is independent of the axial coordinate (see Tvergaard, 1990a,b).
When U1 denotes the increase of the length of the cell, and U2 is the radius increase at the centre of the

cell (at x1 ¼ ‘c=2), the average logarithmic strains in the axial and transverse directions are

�1 ¼ ‘nð1þ U1=‘cÞ and �2 ¼ ‘nð1þ U2=rcÞ, respectively. The average nominal stresses Rij are computed as

the appropriate area averages of the microscopic nominal stress components on the surface (considering

both the cell analysed and one of the neighbouring cells of opposite kind). The axial and transverse Car-

tesian stress components are R11 and R22 ¼ R33, respectively, for the axisymmetric problem, and all shear

components vanish. Using the average strains �1 and �2, the average true stresses r1 and r2 are calculated

from the nominal stress values.
The same set of boundary conditions also applies to a unit cell with more than one fibre along the axis, as

long as the neighbouring cell is identical to that analysed, but is rotated 180� so that it points in the opposite

direction. Such two neighbouring cells are shown in Fig. 2, with the dimensions and the positions of the

additional two fibres specified by ‘1, r1, a1 and ‘2, r2, a2, respectively. The analyses here will consider cells as
that shown in Fig. 2 and compare with predictions for the cell in Fig. 1, for equal values of the total fibre

volume fractions, which is now given by
Fig. 2.

lines.
f ¼ r2f ‘f
�

þ r21‘1 þ r22‘2
�
=r2c‘c ð2:1Þ
As in Tvergaard (1990b) the matrix material deformations are taken to be described by J2 flow theory with

isotropic hardening. A convected coordinate, Lagrangian formulation of the field equations is used, in

which gij and Gij are metric tensors in the reference configuration and the current configuration, respec-

tively, with determinants g and G, and gij ¼ 1=2ðGij � gijÞ is the Lagrangian strain tensor. The contra-
variant components sij of the Kirchhoff stress tensor on the current base vectors are related to the
The axisymmetric unit cell containing three different short fibres. The neighbouring cell, rotated 180�, is indicated by dashed



Fig. 3. Initial meshes used: (a) material A; (b) material B and (c) material C.
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components of the Cauchy stress tensor rij by sij ¼
ffiffiffiffiffiffiffiffiffi
G=g

p
rij. The finite strain generalization of J2 flow

theory, in which the incremental stress–strain relationship is of the form _ssij ¼ Lijk‘ _ggk‘, has the tensor of

instantaneous moduli given by
Lijk‘ ¼ E
1þ m

1

2
GikGj‘
��

þ Gi‘Gjk
�
þ m
1� 2m

GijGk‘ � b
3=2ðE=Et � 1Þ

E=Et � ð1� 2mÞ=3
sijsk‘

r2
e

�

� 1

2
Giksj‘
�

þ Gjksi‘ þ Gi‘sjk þ Gj‘sik
�

ð2:2Þ
Here, sij ¼ sij � Gijskk=3 is the stress deviator, the effective Mises stress is re ¼ ð3sijsij=2Þ1=2, the value of b is

1 or 0 for plastic yielding or elastic unloading, respectively, E is Young�s modulus, m is Poisson�s ratio, and
Et is the slope of the true stress vs natural strain curve at the stress level re. The uniaxial stress–strain
behaviour is represented by
� ¼

r
E

for r6 ry

ry

E
r
ry

� �n

for r > ry

8><
>: ð2:3Þ
where ry is the uniaxial yield stress, and n is the strain hardening exponent.

The debonding behaviour is specified in terms of a cohesive zone model proposed by Tvergaard (1990b)
as an extension of the model by Needleman (1987) to also account for tangential separation. A set of

interface constitutive relations give the dependence of the normal and tangential tractions Tn and Tt on the

corresponding components un and ut of the displacement difference across the interface.

A nondimensional parameter k is defined as
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
un
dn

� �2

þ ut
dt

� �2
s

ð2:4Þ
and a function F ðkÞ is chosen as
F ðkÞ ¼ 27

4
rmaxð1� 2kþ k2Þ; for 06 k6 1 ð2:5Þ
Then, as long as k is monotonically increasing, the interface tractions are taken to be given by the ex-
pressions
Tn ¼
un
dn

F ðkÞ; Tt ¼ a
ut
dt
F ðkÞ ð2:6Þ
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In purely normal separation (ut � 0) the maximum traction is rmax, total separation occurs at un ¼ dn, and
the work of separation per unit interface area is 9rmaxdn=16. In purely tangential separation (un � 0) the

maximum traction is armax, total separation occurs at ut ¼ dt, and the work of separation per unit interface

area is 9armaxdt=16. The values of the four parameters dn, dt, rmax and a have to be chosen such that the
maximum traction and work of separation in different situations are well approximated. The incremental

constitutive relations for the interface, needed in numerical solutions, are directly obtained from (2.6).

These expressions apply for _kkP 0 and k ¼ kmax < 1, while for decreasing k a type of elastic unloading is

used to represent the partly damaged interface (see Tvergaard, 1990b). Furthermore, under normal com-

pression elastic springs with high stiffness are used to approximately represent contact, and also friction

between fibre and matrix after the occurrence of debonding is readily incorporated in the formulation.

The debonding model (2.4)–(2.6) is used for the matrix–fibre interface along the fibre with length ‘f and
radius rf in Fig. 2, and for convenience this fibre is modelled as rigid, while the other two fibres are modelled
as elastic. It has been found for perfectly bonded SiC whisker-reinforced aluminium (Tvergaard, 1990a)

that predictions for elastic or rigid fibres differ rather little when plastic yielding has occurred, since the fibre

elastic modulus is much higher than that of aluminium (Ef ’ 5:7EAl). Therefore, the convenient choice of

modelling one fibre as rigid and the other two fibres as elastic with the high elastic modulus 5.7E is expected

to give a good approximation.

Cylindrical coordinates are used for the numerical analysis of the axisymmetric cell. The displacement

components on the base vectors of the cylindrical reference coordinate system are denoted ui, and the

Lagrangian strain tensor is given by
gij ¼ 1
2
ðui;j þ uj;i þ uk;iuk;jÞ ð2:7Þ
where ð Þ;i denotes the covariant derivative in the reference frame. The principle of virtual work takes the

form
 Z
V
sijdgij dV þ

Z
SI

ðTndun þ TtdutÞdS ¼
Z
S
T idui dS ð2:8Þ
where V and S denote the reference volume and surface of the cell analysed, SI denotes the internal surface,
at which debonding may take place, and T i are the specified nominal surface tractions. The normal dis-

placement difference un and the tangential displacement difference ut across the interface are expressed in

terms of the axial displacement of the rigid fibre and the displacements ui on the matrix side of the interface.

Approximate solutions of (2.8) are obtained by a linear incremental method, using a finite element

approximation of the displacement fields. The elements used are quadrilaterals, each built up of four tri-

angular axisymmetric linear displacement elements, as in previous analyses of fibre debonding (Tvergaard,

1990b, 1991).
A special Rayleigh–Ritz finite element method (Tvergaard, 1990b, 1976) is used to implement the

boundary conditions representing the transversely staggered fibres, to control the numerical stability during

debonding, and to enforce a fixed ratio, q ¼ r2=r1, of the average true stresses in the transverse and axial

directions, respectively.
3. Results

In the present computations the material parameters are chosen to represent the particular aluminium

alloy 2124-SiC whisker-reinforced composite investigated by Christman et al. (1989), that has also been

modelled in the fibre debonding study of Tvergaard (1990b). For this material Tvergaard (1990a) has found
that the uniaxial stress–strain curve of the matrix is reasonably well approximated by the power law (2.3)
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with ry=E ¼ 0:005 and n ¼ 7:66 (i.e. ry ¼ 0:3 GPa and E ¼ 60 GPa), and the value of Poisson�s ratio is

taken to be m ¼ 0:3.
Three different material geometries are considered here, as illustrated by the initial, undeformed meshes

in Fig. 3. All three material geometries have ‘f=rf ¼ 5 and rf=rc ¼ 0:538, and the same total fibre volume
fraction f ¼ 0:13. In addition, material A has only one type of fibre, with ‘f=‘c ¼ 0:448, just like materials

analysed previously (Tvergaard, 1990a,b). Material B is specified by ‘f=‘c ¼ 0:224, r1 ¼ r2 ¼ rf ,
‘1=‘c ¼ 0:112, ‘2=‘c ¼ 0:112, a1=‘c ¼ 0:448 and a2=‘c ¼ 0:785. Material C is rather similar to material A,

but here ‘1=‘c ¼ 0:149, ‘2=‘c ¼ 0:075, a1=‘c ¼ 0:500 and a2=‘c ¼ 0:925. Thus, in material C ‘2 is the half-

length of a fibre that continues across the symmetry plane at x1 ¼ ‘c, similar to the fibre subject to de-

bonding, where ‘f is the half-length of a fibre continuing across the symmetry plane at x1 ¼ 0.

Fig. 4 shows computed stress–strain curves for the three different materials subject to overall uniaxial

tension ðq ¼ r2=r1 ¼ 0Þ. The strength of the fibre–matrix interface is here modeled by using the parameter
values rmax=ry ¼ 5, dn ¼ dt ¼ 0:02rf and a ¼ 1 in (2.4)–(2.6). In all cases debonding initiates at the sharp

fibre edge, where high concentrations of stress and strain develop, and subsequently debonding develops

over the end surface of the long fibre while the overall stress decays rapidly, as is seen in Fig. 4 for all three

curves at a strain around �1 ’ 0:025. After this point the three curves are rather close to each others, while

tangential debonding and fibre pull-out occurs along the sides of the longer fibres. Prior to any debonding,

i.e. prior to the stress peaks, material A shows significantly higher stiffness and stress carrying capacity than

the other two materials. This is not surprising, as all fibres in material A have the high aspect ratio 5, and it

is known from earlier studies (Tvergaard, 1990a) that the material response in the absense of debonding is
very sensitive to the fibre aspect ratio, for a given volume fraction of fibres. During the initial debonding

process the reduction of the stress level is much larger for material A than for the other two materials,

which is related to the fact that in material A all fibres debond simultaneously, while in the other two

materials some of the fibres remain fully bonded. After debonding at the fibre end, during the process of

fibre pull-out, material C shows a slightly higher stress level than the other two materials. This is not

surprising either, since both materials B and C have some fibres that remain fully bonded, but in material C

these fibres have an aspect ratio 33% higher than those in material B, for the same fibre volume fraction,

and therefore, based on the results in Tvergaard (1990a) a higher stress carrying capacity would be ex-
pected.

Fig. 5 shows the deformed meshes corresponding to the end stages of the three computations in Fig. 4,

where the long fibre has debonded at the end and along part of the cylindrical side near the end. The

cylindrical sides of the unit cells are noticeably deformed in Fig. 5, and it is seen that an outward wave at
Fig. 4. Stress–strain curves predicted for q ¼ 0, n ¼ 7:66 and rmax=ry ¼ 5.



Fig. 5. Deformed meshes for q ¼ 0, n ¼ 7:66 and rmax=ry ¼ 5: (a) material A at �1 ¼ 0:094; (b) material B at �1 ¼ 0:111 and (c) material

C at �1 ¼ 0:111.
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one end of the cell side fits into an inward wave at the other end of the cell side, as is needed to follow the

identical neighbouring cell rotated 180� so that it points in the opposite directions (see Fig. 1(a) and

Tvergaard (1990b)). No deformation is visible for the shorter fibres in Figs. 5(b) and (c), which are shown

hatched.

In spite of the result in Tvergaard (1990a) that predictions for elastic or rigid fibres differ rather little, it is

noted that prior to debonding the most stiff response in Fig. 4 is that for material A where all fibres are
approximated as rigid, since all fibres in material A undergo debonding. To check this further, the curve for

material B in Fig. 4 has been recomputed with the elastic fibres ten times as stiff, such that Ef=E ¼ 57:0. The
comparison in Fig. 6 confirms that the fibre elastic modulus Ef ¼ 5:7E is high enough, so that a good

approximation is obtained by representing the debonding fibre as rigid, while the short perfectly bonded

fibres are elastic.

The curves in Fig. 7 are obtained for the same loading conditions and material parameters as those

considered in Fig. 4, except that the interface strength is halved, so that rmax=ry ¼ 2:5. This gives much

earlier debonding at the fibre ends. Also, it is seen in Fig. 7 that the strain for the onset of debonding in
material A is significantly smaller than the corresponding strain for the other two materials, which was not

found in Fig. 4. After debonding at the fibre end the curve for material C stays above the other two, as in

Fig. 4. This is still related to the fact that fibres remaining bonded in material C have larger aspect ratio

than those in material B.
Fig. 6. Comparision of predictions for the fibre elastic modulus Ef ¼ 5:7E with a 10 times higher elastic modulus of the fibres. Stress–

strain curves for material B (Fig. 3(b)), with q ¼ 0, n ¼ 7:66 and rmax=ry ¼ 5.



Fig. 7. Stress–strain curves predicted for q ¼ 0, n ¼ 7:66 and rmax=ry ¼ 2:5.
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In the case of Fig. 8 all material parameters are identical to those considered in Fig. 4, but here the stress
triaxiality is increased by taking q ¼ r2=r1 ¼ 0:5. This results in significantly higher stress levels before

plastic flow develops in the matrix material, and therefore the onset of failure by debonding at the ends of

the longer fibres takes place at much smaller overall strains than those predicted in Fig. 4. Here, the onset of

debonding occurs at a significantly smaller strain in material A than in the other two materials, as was also

found in Fig. 7, and after debonding the curve for material C is above the other two curves, as in Figs. 4 and

7. However, at a strain about 0.058 the curve for material C drops far below that for material B. This is a

result of necking between neighbouring voids growing around fibres that have debonded from the matrix,

as is better understood by considering the deformed unit cells in Fig. 9, showing also the contours of
maximum principal logarithmic strain.

After debonding at the fibre end and along part of the fibre side Fig. 9 shows that the voids around

debonded fibres tend to expand in the radial direction, due to the increased stress triaxiality. Now, for the
Fig. 8. Stress–strain curves predicted for q ¼ 0:5, n ¼ 7:66 and rmax=ry ¼ 5.



Fig. 9. Contours of maximum principal logarithmic strain for q ¼ 0:5, n ¼ 7:66 and rmax=ry ¼ 5: (a) material A at �1 ¼ 0:060;

(b) material B at �1 ¼ 0:108 and (c) material C at �1 ¼ 0:094.
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periodic pattern of fibres considered here, the neighbouring cell is rotated 180� relative to the cell in Fig. 9,

as illustrated in Figs. 1(a) and 2, and the following neighbour is oriented as the cell analysed. Therefore, the

voids around debonded fibres in Figs. 9(b) and (c) would like to interact with the identical voids two cells
away in the radial direction. This is prevented in Fig. 9(b) by the elastic particle between the two voids,

while in Fig. 9(c) there is only matrix material between the adjacent voids, and therefore a neck develops,

leading to the rapid load drop for material C in Fig. 8. The void around the fibre end in Fig. 9(a) interacts

with that in the neighbouring cell, as has also been found in previous analyses for a cell containing only one

type of fibre (Tvergaard, 1993, 1995), and this also gives some load drop at the end of the curve for material

A in Fig. 8.

The effect of strain hardening is studied in Figs. 10 and 11. As in Fig. 4 the composite is subjected to

overall uniaxial tension (q ¼ 0), but in Fig. 10 the matrix material is more high hardening, with n ¼ 4, while
the matrix material in Fig. 11 has lower hardening, n ¼ 12. With high hardening the stress level in the

material increases more rapidly, and therefore debonding initiates at a smaller overall strain. Therefore,

compared to Fig. 4, the onset of debonding occurs at a smaller strain in Fig. 10 and at a larger strain in
Fig. 10. Stress–strain curves predicted for q ¼ 0, n ¼ 4 and rmax=ry ¼ 5.



Fig. 11. Stress–strain curves predicted for q ¼ 0, n ¼ 12 and rmax=ry ¼ 5.
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Fig. 11. In both figures material A shows the highest stress level prior to debonding and material C shows

the highest stress level after debonding, as was also discussed in relation to Figs. 4 and 7.
4. Discussion

For metals reinforced by short brittle fibres most analyses of damage evolution have been based on
studies for a characteristic volume containing just a single fibre, which represents a simple periodic array of

fibres. Effects of non-uniform fibre distributions, including fibre clustering, are important in practice, but in

general studies of such effects would require full three dimensional analyses of large unit cells, containing

several fibres of different shape and spacings. Analyses of cell models containing several non-uniformly

distributed fibres are quite feasible with the assumption of plane strain conditions, but plane strain models

have the disadvantage that the fibre geometry is not at all realistically represented. Three dimensional

studies for metal matrix composites have been carried out, but there are only few studies accounting for full

damage evolution, as e.g. the studies of Tvergaard (1998, 2001), considering ductile matrix failure, since the
description of final failure with the full evolution of open cracks around fibres tends to increase the

computing time by a large factor.

The present extension of a special axisymmetric cell-model to include a number of differently shaped

fibres within each cell has made it possible to study some effects of non-uniform fibre distributions, while

still retaining realistic fibre geometries, and avoiding the large computing times associated with full damage

evolution and crack formation in three-dimensional analyses. One such effect is shielding of a debonding

fibre by neighbouring fibres that do not debond. Some of the analyses here have shown a significant

shielding effect (Figs. 7, 8 and 10), in that the onset of debonding occurs at a larger strain when the
debonding fibre is surrounded by fibres that do not debond. However, the effect is less clear in Figs. 4 and

11, where the onset of debonding occurs at a larger plastic strain level. Here, in spite of the shielding in

materials B and C, the plastic redistribution of the stress fields may have resulted in the longest fibre

carrying a relatively higher part of the load, thus promoting debonding of the long fibre. In conclusion,

shielding can delay the onset of debonding, but there is competition with other mechanisms that can have

an opposite effect.

After debonding at the fibre end, during the stage of gradual fibre pull-out, it is found that the average

stress level is determined by the aspect ratio of the fibres that are still bonded to the matrix. Therefore,
material C shows higher stress carrying capacity after debonding. However, also in this range there can be a
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shielding effect, as is illustrated in Fig. 8 for a material under transverse tension, so that the high stress

triaxiality gives rise to void growth in the transverse direction. Here, shielding from the neighbouring

bonded fibres prevents such void growth in material B, but not in material C due to different locations of

the neighbouring bonded fibres.
It will be of interest, in subsequent studies, to consider other fibre distributions than those analysed here.

Also fibre fracture is an important failure mechanism in metal matrix composites, and further studies can

show whether the interaction between the two failure mechanisms would be affected by the distribution of

fibres of different size.
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